

数字量输出单轴倾角传感器

Modbus通讯协议

1数据帧格式: (8位数据位,1位停止位,无校验,默认速率9600)

地址码 (1byte)	功能码 (1byte)	第一个寄存 器的高位地 址 (1byte)	第一个寄存 器的低位地 址(1byte)	寄存器的数 量的高位 (1byte)	寄存器的数 量的低位 (1byte)	CRC校验 (2byte)
01	03 (读) 06 (写)	xx	XX	xx	xx	xxxx

数据格式: 16进制

地址码: 默认为01 (注意: 地址不可超过255) 功能码: 03代表读取寄存器、06代表预制寄存器 寄存器的地址: 需要操作的寄存器起始地址

寄存器数量:需要操作的寄存器数量

CRC校验:通过主机计算得出(建议用CRC计算软件求得)

2 命令格式:

2.1 读X轴角度 发送命令: 01 03 00 01 00 01 D5 CA

地址码 (1byte)	功能码 (1byte)	第一个寄存 器的高位地 址	第一个寄存 器的低位地 址	寄存器的数 量的高位	寄存器的数 量的低位	CRC 错误校验
01	03	00	01	00	01	D5CA

应答命令:

地址码	功能码	字节数	数据高位	数据低位	CRC错误校验
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(2byte)
01	03	02	XX	XX	XXXX

注:数据域为十六进制数 (PLC或组态软件用16位寄存器直接读数据就是十进制), 化为十进制后, 真实数据= (数据域-20000)/100。如数据域是3D52,转化成十进制是 15698, 真实数据

= (15698-20000) /100=-43.02度, 数据域 1230, 化成十进制是4656, 真实数据

= (4656-20000) /100=-153.44度。

数字量输出单轴倾角传感器

Modbus通讯协议

2.2 设置相对/诀对零点	发送命令: 01 06 00 0A 00 00 A9 C8

地址码	功能码	寄存器的	寄存器的	数据域	CRC校验
(1byte)	(1byte)	高位地址	地位地址	(2byte)	(2byte)
01	06	00	0A	0000: 诀对零点 0001: 相对零点	A9 C8

应答命令:

地址码	功能码	寄存器的	寄存器的	数据域	CRC校验
(1byte)	(1byte)	高位地址	低位地址	(2byte)	(2byte)
01	06	00	0A	0000: 诀对零点 0001: 相对零点	A9 C8

注: 诀对零点: 以出厂标定的零点为基准; 相对零点: 以当前位置设置的零点为基准。

2.3 查询相对/诀对零点 发送命令: 01 03 00 04 00 01 C5 CB

地址码 (1byte)	功能码 (1byte)	第一个寄存 器的高位地 址	第一个寄存 器的低位地 址	寄存器的数量的高位	寄存器的数 量的低位	CRC 错误校验
01	03	00	03	00	01	C5 CB

应答命令:

地址码	功能码	数据域	数据高位	数据低位	CRC校验
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(2byte)
01	03	02	xx	XX	xxxx

2.4 设置地址模块

地址码	功能码	寄存器的	寄存器的	数据域	CRC校验
(1byte)	(1byte)	高位地址	低位地址	(2byte)	(2byte)
01	06	00	0D	模块地址	D9 C9

应答命令:

地址码 (1byte)	功能码 (1byte)	寄存器的 高位地址	寄存器的 低位地址	数据域 (2byte)	CRC校验 (2byte)
01	06	00	0D	模块地址	D9 C9

数字量输出单轴倾角传感器

Modbus通讯协议

2.5 设置通讯速率 发送命令: 01 06 00 0B 00 02 79 C9

地址码	功能码	寄存器的	寄存器的	数据域	CRC校验
(1byte)	(1byte)	高位地址	低位地址	(2byte)	(2byte)
01	06	00	OB	0002	79 9C

应答命令:

地址码	功能码	寄存器的	寄存器的	数据域	CRC校验
(1byte)	(1byte)	高位地址	低位地址	(2byte)	(2byte)
01	06	00	0B	0002	79 9C

注: 0x00表示2400 0x01 表示4800 0x02表示9600 0x03表示19200, 0x04表示115200, 默认值为0x02:9600 每次变更通讯波特率成功之后,会以原波特率发送回应答命令,然后立即改变设备通信波特率

2.6 查询当前地址 发送命令: 01 03 00 05 00 01 74 0A

地址码 (1byte)	功能码 (1byte)	第一个寄存 器的高位地 址 (1byte)	第一个寄存 器的低位地 址(1byte)	寄存器的数 量的高位 (1byte)	寄存器的数 量的低位 (1byte)	CRC校验 (2byte)
01	03	00	03	00	01	74 0A

应答命令:

地址码	功能码	字节数	数据高位	数据低位	CRC校验
(1byte)	(1byte)	(1byte)	(1byte)	(1byte)	(2byte)
01	03	02	xx	XX	xxxx

2.7 保存设置 发送命令: 01 06 00 0F 00 00 78 09

地址码	功能码	寄存器的	寄存器的	数据域	CRC校验
(1byte)	(1byte)	高位地址	低位地址	(2byte)	(2byte)
01	06	00	OF	0000	78 09

应答命令:

地址码	功能码	寄存器的	寄存器的	数据域	CRC校验
(1byte)	(1byte)	高位地址	低位地址	(2byte)	(2byte)
01	06	00	0F	0000	78 09

注:数据域是地址模块